null dp and the maximization principle:
A study of intransitive resultative constructions

Yumiko Ishikawa
Osaka University
i-yumiko@gs.lang.osaka-u.ac.jp

1. Introduction

➢ Type 1—Unergatives can participate in resultative constructions.

(1) English
a. The joggers ran the pavement thin.
 b. Mary danced herself tired.

(2) Icelandic
a. Hann hljóp sig haltan.
 he ran self-ACC limp-ACC
 "He ran himself limp."
 b. Hann oeskradhi sig haasan.
 he shouted himself-ACC hoarse-ACC
 "He shouted himself hoarse."

(3) German
 the joggers run the lawn flat
 "The joggers ran the lawn flat."
 b. Er arbeitete sich müde.
 he worked self tired
 "He worked himself tired."

(Müller, 2002: 211-213)

➢ Type 2—Unergatives never participate in resultative constructions.

(4) French
a. *Je me suis bu malade.
 I myself am drunk sick
 "I drank myself sick."
b. *Ils ont couru le trottoir mince.
 *They have run the pavement thin
 “They ran the pavement thin.”

(5) Spanish
 a. *Mary corrió sus zapatillas gastadas
 *Mary ran her trainers threadbare
 “Mary ran her trainers threadbare.”

2. Previous Researches

2.1. Basic Facts

(6) a. John hammered the metal flat.
 b. John hammered the metal.

(7) a. John drank himself sick.
 b. *John drank himself.
 c. John drank.
 d. *John drank sick. [with the intended meaning “John drank and as a result he became sick.”]

2.2. Ternary-Branching Analysis—Carrier and Randall (1992)

(8) a. They hammered the metal flat. b. John drank himself sick.

 ◆ Problem with Ternary-Branching Analysis

(9) a. John met this student of [physics] with long hair, and Bill met that one with short hair.
 b. John met this student of [physics] with long hair, and Bill met that one.¹
 (Hornstein, Nunes, and Grohmann, 2004: 173)

¹ The word used in the original paper, linguistics is replaced with physics to fit in with the tree diagrams in (10). This change has no crucial influence on the analysis in this presentation.
2.3. Analysis Based on the XP-Movement to Receive a Theta-Role—Saito (2001)

(13) a. John hammered the metal flat.

b. *John drank (sake) sick.
(14) Saito’s Generalization
 An NP can move to VP Spec and pick up an internal θ-role. On the other hand, […] an NP cannot move to νP Spec and receive an external θ-role.
 (Saito, 2001:56)

(15) a. *John [VP t' [HIT t']]
 b. *John [VP t' [BELIEVE t to be intelligent]]
 (HIT / BELIEVE share the θ-structure of hit and believe but lack Case feature)
 (Chomsky, 1995: 313)

(16) a. Sue estimated Bill’s weight.
 b. *Sue estimated Bill.

(17) a. Sue estimated Bill’s weight to be 150 lbs.
 b. *Sue estimated Bill to weigh 150 lbs.
 (Bošković, 1997: 96)

◆ Problem with Saito’s Generalization

(18) a. John washed. (= John washed himself.)
 b. John shaved. (= John shaved himself.)
 c. John dressed. (= John dressed himself.)
 (Lasnik, 1999: 125)

(19) a. [φ [VP wash John]]
 b. [VP John t' wash+φ [VP tV_t]]

2.4. Analysis Based on the Case-Valuation

(20) John drank himself sick.
 a. [φ [VP John drank+φ [VP tV_t [AP himself sick]]]]

(21) John hammered the metal flat.
 a. [VP John hammered+φ [VP the metal tV_t [AP flat]]]
 b. [VP John hammered+φ [VP the metal tV_t [AP flat]]]
*John drank sake sick.

\[[\vP\text{ drank}+\v\text{ [uφ] [VP sake } tV \text{ [AP John sick]]}]) \]

\[[\vT\text{ [uφ] [VP drank}+\v\text{ [uφ] [VP sake } tV \text{ [AP John sick]]}]) \]

\[\text{ACC} \]

θ-roles are formal features and are therefore capable of driving movement, [...].

(Bošković and Takahashi, 1998: 351)

\[\text{Minimal Link Condition} \]

Let \(P \) be a probe. Then the goal \(G \) is the closest feature that can enter into an agreement relation with \(P \).

(Collins, 2002: 57)

\[\text{Defective Intervention Constraints} \]

\(\alpha > \beta > \gamma \)

\(> \) is c-command, \(\beta \) and \(\gamma \) match the probe \(\alpha \), but \(\beta \) is inactive so that the effects of matching are blocked.

(Chomsky, 2000: 123)

\[\text{Problem} \]

*John drank sick.

\[[\vP\text{ John} \text{ drank}+\v\text{ [uφ] [VP tV [AV John sick]]}]) \]

\[[\vT\text{ [uφ] [VP John} \text{ drank}+\v\text{ [uφ] [VP tV [AV John sick]]}]) \]

\[\text{NOM} \]

\[\text{NOM} \]

In both cases, the \(\phi \)-set of \(v \) remains despite their different grammaticality. Therefore, we still need to explain why (26) is ungrammatical.

3. **Proposals**

2 In this formulation, “closest feature” means as follows:

(i) \(P \) c-commands \(G \) and there is no \(G' \) such that \(P \) asymmetrically c-commands \(G' \) and \(G \).

(Collins, 2002: 57)

See also Chomsky 1995: 297, 2000: 122.
(28) [If an expression contains only features interpretable at IL [interface level], it converges at IL.
(Chomsky, 2000: 95)

(29) [The V in an unergative VP does have a null DP complement, [...].
(Pesetsky and Torrego, 2004: 512)

(30) \[\ldots \]

(31) John drank yesterday.
 a. \[\ldots \]

(32) John drank himself sick.
 a. \[\ldots \]

(33) There is likely to arrive a man.
 a. \[\ldots \]

(34) Expl[etive] is \(\varphi \)-incomplete.
(Chomsky, 2001: 16)

(35) \(\alpha \) must have a complete set of \(\varphi \)-features (it must be \(\varphi \)-complete) to delete uninterpretable features
of the paired matching element \(\beta \).
(ibid.: 6)

(36) Maximization Principle
Maximize the matching effects.
(ibid.: 15)

(37) The null DP complement of the unergative VP is \(\varphi \)-incomplete (lacking a gender or a person
feature, or both, but having a \(\beta \)-feature) in English, if the verb does not have a second object.

\[\text{Notice that this proposal does not define the status of the null DP in (31), whether it is } \varphi \text{-complete or } \varphi \text{-incomplete. In } \]

\[\text{English, there are both } \varphi \text{-complete and } \varphi \text{-incomplete expletives (it and there respectively) and therefore, the same case } \]

\[\text{might hold for the null DPs. If the null DP in (31) is } \varphi \text{-complete, the } \varphi \text{-set of } v \text{ can be deleted without any problem. On } \]

\[\text{the other hand, if the null DP in (31) is } \varphi \text{-incomplete, we need to consider how the } \varphi \text{-set of } v \text{ is deleted. Suppose that the } \]

\[\text{...} \]
Maximization Principle is applied in English intransitive resultatives.

4. Analysis

4.1. Intransitive Resultatives

Postverbal DP is valued an accusative Case by the application of the Maximization Principle.

- John drank himself sick.
- [\(T' T[uφ] [vP v P null DP[φ-incomplete] [AP himself sick]]]\]

We expect there to arrive a man.

- [\(T' T[uφ] [vP we expects+ [vP Expl[φ-incomplete] to arrive a man]]\]

Null DP complement blocks the movement of the postverbal DP to \(vP\) Spec.

- *John drank sick.
- [\(vP _ _ _ [vP drank+v[uφ] [vP null DP[φ-incomplete] [AP John sick]]]\]
- [\(T' T[uφ] [vP drank+v[uφ] [vP null DP[φ-incomplete] [AP John sick]]]\]

Phrase Structure of Resultatives:

- transitive resultatives: [\(vP DP v [vP DP V [AP tDP A]]\)]
- intransitive resultatives: [\(vP DP v [vP V null DP [AP DP A]]\)]

4.2. Supporting Evidence

\(φ\)-set of \(T\) (or \(v\)) can be deleted by an incomplete set of \(φ\)-features of a DP, if there is no more remote goal. Then, the contrast below should be analyzed without asserting that the \(φ\)-set of \(T\) cannot be deleted. See Vikner (1995) for a possible approach.

(i) It is likely that John is honest.
(ii) *There is likely that John is honest.

I will take the first view since the second view might make the Maximization Principle meaningless.
4.2.1. Gapping

(43) a. John hammered a hubcap thin and Mary, flat.
 b. *John sang the baby asleep and Mary, happy.

(44) a. John_3 [_AP t_3 hammered+_v [_VP a hubcap_1 t_V [_AP t_1 thin]]] and
 Mary_2 [_AP t_2 hammered+_v [_VP a hubcap_1 t_V [_AP t_1 flat]]]
 b. John_3 [_AP t_3 hammered+_v [_VP a hubcap_1 t_V t_AP]] [_AP t_1 thin]] and
 Mary_2 [_AP t_2 pumped+_v [_VP a hubcap_1 t_V t_AP]] [_AP t_1 flat]]
 c. John hammered a hubcap thin and Mary ∆ [_AP t_1 flat]

(45) a. John_2 [_AP t_2 sang+_v [_VP t_V null DP [_AP the baby asleep]]] and
 Mary_1 [_AP t_1 sang+_v [_VP t_V null DP [_AP the baby happy]]]
 b. John_2 [_AP t_2 sang+_v [_VP t_V null DP t_AP]] [_AP the baby asleep]] and
 Mary_1 [_AP t_1 sang+_v [_VP t_V null DP t_AP]] [_AP the baby happy]]
 c. *John sang the baby asleep and Mary ∆ [_AP the baby happy]

(46) The deleted element is inconsistent with the remaining element in intransitive resultatives.

4.2.2. Topicalization

(47) a. Flat, John hammered the metal.
 b. *Thin, the joggers ran the pavement.

(48) a. ____, John hammered [_VP the metal_1 t_V [_AP t_1 flat]].
 b. [_AP t_1 flat], John hammered the metal_1 t_V t_AP.

(49) a. ____, the joggers ran [_VP t_V null DP [_AP the pavement thin]].
 b. *[A thin], the joggers ran null DP [_AP the pavement t_A].

(50) Topicalization cannot be applied to nonmaximal projections.

4.2.3. Though-Movement
(51) a. Flat though John hammered the metal, the customer ordered thick one.
 b. *Thin though the joggers ran the pavement, the city was in financial difficulties in road repairing.

(52) a. ____ though John hammered the metal \([AP t_1 \text{ flat}]\), …
 b. \([AP t_1 \text{ flat}]\) though John hammered the metal \(l_{AP}\), …

(53) a. ____ though the joggers ran null DP \([AP \text{ the pavement thin}]\), …
 b. *[A thin] though the joggers ran null DP \([AP \text{ the pavement } t_A]\), …

(54) Only maximal projections are subject to though-movement.

4.2.4. Cleft Sentence

(55) a. It was a steak that John cooked black.
 b. It was his Nikes that the jogger ran threadbare.

(56) a. *It was crazy that Mary drove John.
 b. *It is eccentric that Mary considers John.

(57) a. It is white that Peter painted the walls.
 b. *It is thin that the joggers ran the pavement.

(58) a. It was \([DP \text{ a steak}]\) that John cooked \([AP t_1 \text{ black}]\).
 b. *It is \([A \text{ eccentric}]\) that Mary considers \([AP \text{ John } t_A]\).

(59) Clefting can be applied only to maximal projections.

(60) a. It is ____ that Peter painted the walls \([AP t_1 \text{ white}]\)
 b. It is \([AP t_1 \text{ white}]\) that Peter painted the walls \(l_{AP}\)

(61) a. It is ____ that the joggers ran null DP \([AP \text{ the pavement thin}]\)
 b. *It is \([A \text{ thin}]\) that the joggers ran null DP \([AP \text{ the pavement } t_A]\)

4.3. Unaccusative Resultatives

(62) a. The ice froze solid.
 b. The bottle broke open.

(63) A phase is CP or vP, but not TP or a verbal phrase headed by H lacking φ-features not entering into Case / agreement checking: neither finite TP nor unaccusative / passive verbal phrase is
(Chomsky, 2000: 106-107)

(64) The ice froze solid.
a. \[T' T[\phi] \{\text{froze}+\phi\text{-incomplete}\} \{\text{the ice}[D] t_v \{\text{solid} [\phi]\}\} \]

(65) Phrase Structure of Unaccusative Resultatives
\[\{\text{vp} \{\text{up-defective}\}\} \{\text{vp} \{\text{AP}\} \{\text{DP}\}\} \]

(66) Phrase Structure of Resultatives
a. transitive resultatives: \[\{\text{vp} \{\text{DP}\} \{\text{vp} \{\text{VP}\}\} \{\text{AP} [D]\}\} \]
b. intransitive resultatives: \[\{\text{vp} \{\text{DP}\} \{\text{vp} \{\text{VP}\} \{\text{null DP}\} [\text{AP} [D]\}\} \]

(67) a. Solid, the ice froze.
b. Solid though the ice froze, John broke it by hand.
c. It is solid that the ice froze.

5. Crosslinguistic Variety

5.1. Expletive Constructions

➢ Type1—The verb agrees with the postverbal DP.

(68) Icelandic
a.
\[\text{ðað eru/*er málfraðingar í heberginu}. \]
\[\text{Expl are/*is linguists in room. the} \]
\[“\text{There are linguists in the room.”} \]

b. \[T' T[\phi] \{\text{[q-incomplete]} \{\text{eru málfraðingar í heberginu}\}\]

(69) German
a.
\[\text{es sind/*ist drei Autos draußen}. \]
\[\text{there are/*is three cars outside} \]
\[“\text{There are three cars outside.”} \]

b. \[T' T[\phi] \{\text{[q-incomplete]} \{\text{sind drei Autos draußen}\}\]

(Vangsnes, 2002: 57)

(Vikner, 1995: 181)
Type 2 — The verb agrees with the expletive subject.

(70) French
a. Il y a des livres sur la table.
 Expletive there has INDEF-PL books on the table
 "There are books on the table."

b. [\[T[\[uϕ]\] Expl y a+[ϕ] des livres sur la table\]]
 \[NOM\] [\[ACC\] [\[\]^\]]]

(71) Spanish
a. [\[pro]\] Hay varios papeles en ese cuaderno.
 there have several papers in that notebook
 "There are several papers in that notebook."

 (Zagona, 1988: 134)

b. [\[T[\[uϕ]\] Expl Hay+[ϕ] various papeles en ese cuaderno\]]
 \[NOM\] [\[ACC\] [\[\]^\]]]

(72) There exists a parameter pertaining to the existence of the \(ϕ\)-incomplete DPs.

<table>
<thead>
<tr>
<th></th>
<th>(ϕ)-incomplete DPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, Icelandic, German</td>
<td>yes</td>
</tr>
<tr>
<td>French, Spanish</td>
<td>no</td>
</tr>
</tbody>
</table>

5.2. Intransitive Resultatives

Type 1 — Null DP complement is \(ϕ\)-incomplete and therefore, the Maximization Principle can be applied.

(73) Icelandic
a. Hann öskradhi sig haasan.
 he shouted himself hoarse
 "He shouted himself hoarse."

b. [\[T[\[uϕ]\] [\[AP Hann öskradhi+[ϕ] [\[VP tv null DP[\(ϕ\)-incomplete] [\[AP sig haasan]\]]\]]\]]
 \[NOM\] [\[AP sig haasan\]] [\[\]^\]]

(74) German
the joggers run the lawn flat
“The joggers ran the lawn flat.”
b. [T[Die Jogger liefen+] [VP tv null DP[φ-incomplete] [AP Rasen platt]]]

Type 2—Null DP complement is φ-complete and therefore, the Maximization Principle cannot be applied.

(75) French

a. *Ils ont couru le trottoir mince.
 they have run the pavement thin
 “They ran the pavement thin.”

b. [T[ils ont couru+] [VP tv null DP[le trottoir mince]]]

(76) Spanish

a. *Mary corrió sus zapatillas gastadas
 Mary ran her trainers threadbare
 “Mary ran her trainers threadbare.”

b. [T[Mary corrio+] [VP tv null DP[suz zapatillas gastadas]]]

(77) The status of the null DP, namely whether it is φ-complete or φ-incomplete is involved with the acceptability of intransitive resultatives in natural language.

<table>
<thead>
<tr>
<th>Language</th>
<th>φ-incomplete expletive</th>
<th>φ-incomplete null DP</th>
<th>Intransitive resultatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>yes</td>
<td>yes</td>
<td>acceptable</td>
</tr>
<tr>
<td>Icelandic</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>no</td>
<td>no</td>
<td>unacceptable</td>
</tr>
<tr>
<td>Spanish</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

6. Summary
The 29th Annual Meeting of the Kansai Linguistic Society

(78) The V in the unergative VP has a null DP complement in English and this DP blocks the movement of the postverbal DP in intransitive resultatives.

(79) Phrase Structure of Resultatives:
 a. transitive resultatives: \[vP \left[vP vP vP \right] \]
 b. intransitive resultatives: \[vP \left[vP V null DP \left[tP A \right] \right] \]

(80) There exists a parameter pertaining to the existence of the \(\phi \)-incomplete DPs and the parametrically determined status of the null DP, namely whether it is \(\phi \)-complete or \(\phi \)-incomplete is involved with the acceptability of intransitive resultatives in natural languages.

References

